博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
MDS
阅读量:6364 次
发布时间:2019-06-23

本文共 1532 字,大约阅读时间需要 5 分钟。

MDS(multidimensional scaling)多维尺度分析:MDS利用的是成对样本间相似性,目的是利用这个信息去构建合适的低维空间,是的样本在此空间的距离和在高维空间中的样本间的相似性尽可能的保持一致。MDS试图找到一个子空间Rn,I个物体嵌入在这个子空间中,而彼此的相似度被尽可能的保留。如果这个子空间的维数N选择为2或者3,可以画出向量xj获得一个I个物体相似性的一个可视化的结果。

Details

The data to be analyzed is a collection of I objects (colors, faces, stocks, . . .) on which a distance function is defined,

δ
i,j := distance between
i th and
j th objects.

These distances are the entries of the dissimilarity matrix

\Delta :=  \begin{pmatrix} \delta_{1,1} & \delta_{1,2} & \cdots & \delta_{1,I} \\ \delta_{2,1} & \delta_{2,2} & \cdots & \delta_{2,I} \\ \vdots & \vdots & & \vdots \\ \delta_{I,1} & \delta_{I,2} & \cdots & \delta_{I,I} \end{pmatrix}.

The goal of MDS is, given Δ, to find I vectors x_1,\ldots,x_I \in \mathbb{R}^N such that

\|x_i - x_j\| \approx \delta_{i,j} for all
i,j\in I,

where \|\cdot\| is a vector norm. In classical MDS, this norm is the Euclidean distance, but, in a broader sense, it may be a metric or arbitrary distance function.

In other words, MDS attempts to find an embedding from the I objects into RN such that distances are preserved. If the dimension N is chosen to be 2 or 3, we may plot the vectors xi to obtain a visualization of the similarities between the I objects. Note that the vectors xi are not unique: With the Euclidean distance, they may be arbitrarily translated and rotated, since these transformations do not change the pairwise distances \|x_i - x_j\|.

There are various approaches to determining the vectors xi. Usually, MDS is formulated as an optimization problem, where (x_1,\ldots,x_I) is found as a minimizer of some cost function, for example,

\min_{x_1,\ldots,x_I} \sum_{i<j} ( \|x_i - x_j\| - \delta_{i,j} )^2. \,

A solution may then be found by numerical optimization techniques. For some particularly chosen cost functions, minimizers can be stated analytically in terms of matrix eigendecompositions.

转载于:https://www.cnblogs.com/USTC-fuxm/archive/2012/08/29/2662101.html

你可能感兴趣的文章
获取设备列表
查看>>
Linux文件系统(分区)操作管理指令总结
查看>>
Django使用网上模板做个能展示的博客
查看>>
基于同IP不同端口,同端口不同Ip的虚拟主机 基于FQDN的虚拟主机
查看>>
项目软件集成三方模块,编译中int32和uint32定义冲突解决方法
查看>>
StretchDIBits速度测试(HALFTONE)
查看>>
在.NET Workflo“.NET研究”w 3.5中使用多线程提高工作流性能
查看>>
验证Oracle处理速度
查看>>
自己写一个jquery
查看>>
BGP聚合attribute-map
查看>>
艾伟:C#中抽象类和接口的区别
查看>>
Flink - NetworkEnvironment
查看>>
BZOJ4374 : Little Elephant and Boxes
查看>>
【.Net Framework 体积大?】不安装.net framework 也能运行!?开篇叙述-1
查看>>
LLDP协议、STP协议 笔记
查看>>
Service Mesh 了解
查看>>
tomcat中的Manager App帐号password管理
查看>>
如何使用 GroupBy 计数-Count()
查看>>
有了这个课件制作工具,还怕备课有难题?
查看>>
大数据时代的 9 大Key-Value存储数据库
查看>>